Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
Glob Chang Biol ; 26(12): 7268-7283, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33026137

ABSTRACT

Globally, soils store two to three times as much carbon as currently resides in the atmosphere, and it is critical to understand how soil greenhouse gas (GHG) emissions and uptake will respond to ongoing climate change. In particular, the soil-to-atmosphere CO2 flux, commonly though imprecisely termed soil respiration (RS ), is one of the largest carbon fluxes in the Earth system. An increasing number of high-frequency RS measurements (typically, from an automated system with hourly sampling) have been made over the last two decades; an increasing number of methane measurements are being made with such systems as well. Such high frequency data are an invaluable resource for understanding GHG fluxes, but lack a central database or repository. Here we describe the lightweight, open-source COSORE (COntinuous SOil REspiration) database and software, that focuses on automated, continuous and long-term GHG flux datasets, and is intended to serve as a community resource for earth sciences, climate change syntheses and model evaluation. Contributed datasets are mapped to a single, consistent standard, with metadata on contributors, geographic location, measurement conditions and ancillary data. The design emphasizes the importance of reproducibility, scientific transparency and open access to data. While being oriented towards continuously measured RS , the database design accommodates other soil-atmosphere measurements (e.g. ecosystem respiration, chamber-measured net ecosystem exchange, methane fluxes) as well as experimental treatments (heterotrophic only, etc.). We give brief examples of the types of analyses possible using this new community resource and describe its accompanying R software package.


Subject(s)
Greenhouse Gases , Atmosphere , Carbon Dioxide/analysis , Ecosystem , Greenhouse Gases/analysis , Methane/analysis , Nitrous Oxide/analysis , Reproducibility of Results , Respiration , Soil
3.
Environ Pollut ; 158(8): 2604-9, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20641169

ABSTRACT

Canopies of adult European beech (Fagus sylvatica) and Norway spruce (Picea abies) were labeled with CO(2) depleted in (13)C to evaluate carbon allocation belowground. One-half the trees were exposed to elevated O(3) for 6 yrs prior to and during the experiment. Soil-gas sampling wells were placed at 8 and 15 cm and soil CO(2) was sampled during labeling in mid-late August, 2006. In beech, delta(13)CO(2) at both depths decreased approximately 50 h after labeling, reflecting rapid translocation of fixed C to roots and release through respiration. In spruce, label was detected in fine-root tissue, but there was no evidence of label in delta(13)CO(2). The results show that C fixed in the canopy rapidly reaches respiratory pools in beech roots, and suggest that spruce may allocate very little of recently-fixed carbon into root respiration during late summer. A change in carbon allocation belowground due to long-term O(3) exposure was not observed.


Subject(s)
Air Pollutants/toxicity , Carbon/analysis , Fagus/metabolism , Ozone/toxicity , Picea/metabolism , Carbon Isotopes , Fagus/drug effects , Germany , Isotope Labeling , Picea/drug effects , Plant Roots/metabolism
4.
Ecol Appl ; 16(6): 2368-81, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17205911

ABSTRACT

Previously we found that cloned cottonwood saplings (Populus deltoides) grew twice as large in New York, New York, USA, compared to surrounding rural environments and that soils, temperature, CO2, nutrient deposition, and microclimatic variables could not account for the greater urban plant biomass. Correlations between final season biomass and cumulative O3 exposures, combined with twofold growth reductions in an open-top chamber experiment provided strong evidence that higher cumulative O3 exposures in rural sites reduced growth in the country. Here, we assess the field gas exchange, growth and development, and allocation responses underlying the observed growth differences and compare them with isolated O3 responses documented in the open-top chamber experiment. Cottonwoods showed no visible foliar injury, reduced photosynthesis of recently expanded foliage, early leaf senescence, protective reduction in stomatal conductance, or compensatory allocation to shoot relative to root biomass for either the chamber or field experiment. Instead, O3-impacted chamber plants had significantly higher conductance and reduced photosynthesis of older foliage that led to reduced leaf area production and a twofold biomass reduction in the absence of visible injury. Rural-grown field plants showed the same pattern of significantly higher conductance in the absence of concomitant increases in photosynthesis that was indicative of a loss of stomatal control. Incremental changes in foliar production were also significantly inversely related to fluctuations in ambient O3 exposures. The similarity in biomass, gas exchange, phenological, and allocation responses between chamber and field experiments indicate that mechanisms accounting for reduced growth at rural sites were consistent with those in the open-top chamber O3 experiment. This study shows the limitation of visible symptoms as a sole diagnostic factor for documenting detrimental O3 impacts and points toward a new approach to show O3 impacts when visible injury is not present. Namely, O3-impacted vegetation showed an unusual inverse relationship of increased conductance with lower photosynthesis of older foliage that was indicative of a loss of stomatal control. This increased stomatal conductance of O3-impacted vegetation accentuates pollutant flux into affected foliage and has important implications for system water balance during warm, dry portions of the growing season when O3 concentrations are highest.


Subject(s)
Air Pollutants/toxicity , Ozone/toxicity , Populus/drug effects , Cities , New York , Photosynthesis/drug effects , Plant Leaves/drug effects , Plant Leaves/physiology , Plant Roots/drug effects , Plant Roots/growth & development , Plant Shoots/drug effects , Plant Shoots/growth & development , Populus/physiology
5.
Oecologia ; 144(4): 520-7, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15711995

ABSTRACT

Stable isotope mixing models are often used to quantify source contributions to a mixture. Examples include pollution source identification; trophic web studies; analysis of water sources for soils, plants; or water bodies, and many others. A common problem is having too many sources to allow a unique solution. We discuss two alternative procedures for addressing this problem. One option is a priori to combine sources with similar signatures so the number of sources is small enough to provide a unique solution. Aggregation should be considered only when isotopic signatures of clustered sources are not significantly different, and sources are related so the combined source group has some functional significance. For example, in a food web analysis, lumping several species within a trophic guild allows more interpretable results than lumping disparate food sources, even if they have similar isotopic signatures. One result of combining mixing model sources is increased uncertainty of the combined end-member isotopic signatures and consequently the source contribution estimates; this effect can be quantified using the IsoError model (http://www.epa.gov/wed/pages/models/isotopes/isoerror1_04.htm). As an alternative to lumping sources before a mixing analysis, the IsoSource mixing model (http://www.epa.gov/wed/pages/models/isosource/isosource.htm) can be used to find all feasible solutions of source contributions consistent with isotopic mass balance. While ranges of feasible contributions for each individual source can often be quite broad, contributions from functionally related groups of sources can be summed a posteriori, producing a range of solutions for the aggregate source that may be considerably narrower. A paleo-human dietary analysis example illustrates this method, which involves a terrestrial meat food source, a combination of three terrestrial plant foods, and a combination of three marine foods. In this case, a posteriori aggregation of sources allowed strong conclusions about temporal shifts in marine versus terrestrial diets that would not have otherwise been discerned.


Subject(s)
Ecology/methods , Isotopes/metabolism , Algorithms , Animals , Biological Evolution , Biomass , Ecosystem , Environmental Monitoring/methods , Food Chain , Humans , Isotopes/analysis , Models, Theoretical , Plants/metabolism , Reproducibility of Results
6.
Nature ; 424(6945): 183-7, 2003 Jul 10.
Article in English | MEDLINE | ID: mdl-12853954

ABSTRACT

Plants in urban ecosystems are exposed to many pollutants and higher temperatures, CO2 and nitrogen deposition than plants in rural areas. Although each factor has a detrimental or beneficial influence on plant growth, the net effect of all factors and the key driving variables are unknown. We grew the same cottonwood clone in urban and rural sites and found that urban plant biomass was double that of rural sites. Using soil transplants, nutrient budgets, chamber experiments and multiple regression analyses, we show that soils, temperature, CO2, nutrient deposition, urban air pollutants and microclimatic variables could not account for increased growth in the city. Rather, higher rural ozone (O3) exposures reduced growth at rural sites. Urban precursors fuel the reactions of O3 formation, but NO(x) scavenging reactions resulted in lower cumulative urban O3 exposures compared to agricultural and forested sites throughout the northeastern USA. Our study shows the overriding effect of O3 despite a diversity of altered environmental factors, reveals 'footprints' of lower cumulative urban O3 exposures amidst a background of higher regional exposures, and shows a greater adverse effect of urban pollutant emissions beyond the urban core.


Subject(s)
Environment , Populus/growth & development , Trees/growth & development , Air Pollutants/metabolism , Biomass , Carbon Dioxide/metabolism , Ecological Systems, Closed , New York City , Ozone/metabolism , Populus/metabolism , Soil , Soil Pollutants/metabolism , Temperature , Trees/metabolism , Urbanization
7.
Oecologia ; 136(2): 261-9, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12759813

ABSTRACT

Stable isotopes are increasingly being used as tracers in environmental studies. One application is to use isotopic ratios to quantitatively determine the proportional contribution of several sources to a mixture, such as the proportion of various pollution sources in a waste stream. In general, the proportional contributions of n+1 different sources can be uniquely determined by the use of n different isotope system tracers (e.g., delta13C, delta15N, delta18O) with linear mixing models based on mass balance equations. Often, however, the number of potential sources exceeds n+1, which prevents finding a unique solution of source proportions. What can be done in these situations? While no definitive solution exists, we propose a method that is informative in determining bounds for the contributions of each source. In this method, all possible combinations of each source contribution (0-100%) are examined in small increments (e.g., 1%). Combinations that sum to the observed mixture isotopic signatures within a small tolerance (e.g., +/-0.1 per thousand ) are considered to be feasible solutions, from which the frequency and range of potential source contributions can be determined. To avoid misrepresenting the results, users of this procedure should report the distribution of feasible solutions rather than focusing on a single value such as the mean. We applied this method to a variety of environmental studies in which stable isotope tracers were used to quantify the relative magnitude of multiple sources, including (1) plant water use, (2) geochemistry, (3) air pollution, and (4) dietary analysis. This method gives the range of isotopically determined source contributions; additional non-isotopic constraints specific to each study may be used to further restrict this range. The breadth of the isotopically determined ranges depends on the geometry of the mixing space and the similarity of source and mixture isotopic signatures. A sensitivity analysis indicated that the estimated ranges vary only modestly with different choices of source increment and mass balance tolerance parameter values. A computer program (IsoSource) to perform these calculations for user-specified data is available at http://www.epa.gov/wed/pages/models.htm.


Subject(s)
Models, Theoretical , Carbon Isotopes/metabolism , Ecosystem , Environmental Monitoring/methods , Nitrogen Isotopes/metabolism , Oxygen Isotopes/metabolism , Reproducibility of Results
8.
Tree Physiol ; 22(15-16): 1107-17, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12414370

ABSTRACT

The magnitude of hydraulic redistribution of soil water by roots and its impact on soil water balance were estimated by monitoring time courses of soil water status at multiple depths and root sap flow under drought conditions in a dry ponderosa pine (Pinus ponderosa Dougl. ex Laws) ecosystem and in a moist Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) ecosystem. The fate of deuterated water applied to small plots to create a strong horizontal soil water potential gradient was also monitored to assess the potential for horizontal redistribution of water and utilization of redistributed water by co-occurring shallow-rooted plants. In a 20-year-old Douglas-fir stand, approximately 28% of the water removed daily from the upper 2 m of soil was replaced by nocturnal hydraulic redistribution during late August. In an old-growth ponderosa pine stand, approximately 35% of the total daily water utilization from the upper 2 m of soil appeared to be replaced by hydraulic redistribution during July and August. By late September, hydraulic redistribution in the ponderosa pine stand was no longer apparent, even though total water use from the upper 2 m of soil was nearly identical to that observed earlier. Based on these results, hydraulic redistribution would allow 21 and 16 additional days of stored water to remain in the upper soil horizons in the ponderosa pine and Douglas-fir stands, respectively, after a 60-day drought. At both sites, localized applications of deuterated water induced strong reversal of root sap flow and caused soil water content to cease declining or even temporarily increase at locations too distant from the site of water application to have been influenced by movement of water through the soil without facilitation by roots. Xylem water deuterium values of ponderosa pine seedlings suggested utilization of redistributed water. Therefore, hydraulic redistribution may enhance seedling survival and maintain overstory transpiration during summer drought. These first approximations of the extent of hydraulic redistribution in these ecosystems suggest that it is likely to be an important process in both wet and dry forests of the Pacific Northwest.


Subject(s)
Pinus/physiology , Plant Transpiration/physiology , Pseudotsuga/physiology , Trees/physiology , Ecosystem , Oregon , Plant Roots/physiology , Plant Stems/physiology , Rain , Seasons , Soil , Time Factors , Washington , Water
9.
Oecologia ; 127(2): 171-179, 2001 Apr.
Article in English | MEDLINE | ID: mdl-24577646

ABSTRACT

Stable isotope analyses are often used to quantify the contribution of multiple sources to a mixture, such as proportions of food sources in an animal's diet, or C3 and C4 plant inputs to soil organic carbon. Linear mixing models can be used to partition two sources with a single isotopic signature (e.g., δ(13)C) or three sources with a second isotopic signature (e.g., δ(15)N). Although variability of source and mixture signatures is often reported, confidence interval calculations for source proportions typically use only the mixture variability. We provide examples showing that omission of source variability can lead to underestimation of the variability of source proportion estimates. For both two- and three-source mixing models, we present formulas for calculating variances, standard errors (SE), and confidence intervals for source proportion estimates that account for the observed variability in the isotopic signatures for the sources as well as the mixture. We then performed sensitivity analyses to assess the relative importance of: (1) the isotopic signature difference between the sources, (2) isotopic signature standard deviations (SD) in the source and mixture populations, (3) sample size, (4) analytical SD, and (5) the evenness of the source proportions, for determining the variability (SE) of source proportion estimates. The proportion SEs varied inversely with the signature difference between sources, so doubling the source difference from 2‰ to 4‰ reduced the SEs by half. Source and mixture signature SDs had a substantial linear effect on source proportion SEs. However, the population variability of the sources and the mixture are fixed and the sampling error component can be changed only by increasing sample size. Source proportion SEs varied inversely with the square root of sample size, so an increase from 1 to 4 samples per population cut the SE in half. Analytical SD had little effect over the range examined since it was generally substantially smaller than the population SDs. Proportion SEs were minimized when sources were evenly divided, but increased only slightly as the proportions varied. The variance formulas provided will enable quantification of the precision of source proportion estimates. Graphs are provided to allow rapid assessment of possible combinations of source differences and source and mixture population SDs that will allow source proportion estimates with desired precision. In addition, an Excel spreadsheet to perform the calculations for the source proportions and their variances, SEs, and 95% confidence intervals for the two-source and three-source mixing models can be accessed at http://www.epa.gov/wed/pages/models.htm.

10.
Oecologia ; 128(2): 304, 2001 Jul.
Article in English | MEDLINE | ID: mdl-28547480
SELECTION OF CITATIONS
SEARCH DETAIL
...